
Output Feedback Adaptive Control of Non-Minimum Phase
Systems Using Optimal Control Modification

Nhan Nguyen∗

NASA Ames Research Center, Moffett Field, CA 94035
Kelley E. Hashemi†

Universities Space Research Association, Moffett Field, CA 94035
Tansel Yucelen‡

University of South Florida, FL 33620
Ehsan Arabi§

University of South Florida, FL 33620

Abstract

This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with
relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal
control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot
be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic
tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum
phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation
which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using
this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance
can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger
observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference
model, the reference model is established from the linear quadratic optimal control to account for the non-minimum
phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback
adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch
between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded
signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output
feedback adaptive control for a flexible wing aircraft illustrates the approaches.

1 Introduction
Consider the system

ẋ = Ax+Bu+∆(x,z,u)
ż = f (x,z,u)

y =Cx
(1)

where z(t) is an internal state vector, ∆(x,z,u) is the plant model error that is unknown and not accounted for, ż(t) is
the unmodeled dynamics, and y(t) is the plant output vector.

When the tracking error based on only the output signal y(t) is used for model-reference adaptive control (MRAC),
such a class of adaptive control is called output feedback adaptive control. If a stable reference model ym (t) is specified
for the output y(t) to track, then model-reference adaptive control is feasible if the plant transfer function satisfies the
strictly positive real (SPR) condition. Therefore, an essential requirement for output feedback adaptive control is the
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SPR condition which the transfer function must satisfy. Classical treatments of output feedback adaptive control are
discussed extensively by Åström and Wittenmark [1], Ioannu [2], and Narendra and Annaswamy [3].

Non-minimum phase systems, on the other hand, do not possess SPR transfer functions. Therefore, output feed-
back adaptive control of systems with non-SPR transfer functions can be challenging. Non-minimum phase plants
generally pose more difficulty to MRAC than minimum phase plants. Output feedback adaptive control generally
relies on the SPR property to ensure stability. The difficulty with adaptive control design for non-minimum phase
plants is due to the ideal property of MRAC which attempts to seek asymptotic tracking at all cost. This results in a
pole-zero cancellation in the right half plane for non-minimum phase systems which leads to unbounded signals [4].

The linear asymptotic property of the optimal control modification [5] can be used for adaptive control of non-
minimum phase plants [4]. By modifying the standard MRAC, the pole-zero cancellation in the right half plane
can be prevented. This then results in bounded tracking as opposed to asymptotic tracking. Closed-loop stability
can be obtained by a judicious choice of the modification parameter ν . However, the tracking performance of this
approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance
can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger
observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference
model, the reference model is established from the linear quadratic optimal control to account for the non-minimum
phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback
adaptive control can maintain stability as well as tracking performance. It should be noted that Lavretsky and Wise
also develop an observer-based output feedback adaptive control approach with a loop transfer recovery [6]. Lavretsky
further extends this method for non-minimum phase plants with arbitrary relative degree [7].

In this paper, we will present an optimal control modification output feedback adaptive control method for non-
minimum phase single-input single-out (SISO) systems with relative degree 1. Bounded tracking is guaranteed with
this method. The optimal control modification output feedback adaptive control method is then extended to non-SPR
multiple input multiple output (MIMO) systems with uniform relative degree 1. Finally, an observer-based output
feedback adaptive control method is developed for non-SPR MIMO systems using the optimal control modification.
The study shows that the optimal control modification can improve stability and performance of output feedback
adaptive control systems in all cases.

2 Output Feedback Adaptive Control of Non-Minimum Phase SISO Sys-
tems with Relative Degree 1

Consider the following SISO plant:

ẋ = Ax+Bu⇔
[

ẋ1
ẋ2

]
=

[
a g
l h

][
x1
x2

]
+

[
b
m

]
u

y =Cx =
[

1 0
][ x1

x2

]
= x1

(2)

with x(0) = x0, where x2 (t) is the unmeasurable state with internal dynamics, a unknown but all the other parameters
are known, b 6= 0, and h < 0.

The transfer functions of the plant is expressed as

y
u
=Wp (s) = kp

Zp (s)
Rp (s)

=
b(s−h)+gm

(s−a)(s−h)−gl
(3)

where kp = b. Note that Wm (s) is SPR with a relative degree 1. The plant also has a relative degree 1 and is assumed
to be stable. So, Rp (s) = (s−a)(s−h)−gl is Hurwitz.

The objective is to design an output feedback adaptive controller to track the following reference model:

ym =Wm (s)r = km
Zm (s)
Rm (s)

r =
bmr

s−am
(4)

with ym (0) = ym0 , where am < 0 and km = bm. The ideal output feedback adaptive controller is designed to be of the
form

u∗ =−b−1
θ
∗
1 y∗− b−1θ ∗2 y∗

s−λ
−

b−1θ ∗3 u∗

s−λ
+b−1bmr (5)
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where λ < 0 is a chosen parameter, and θ ∗1 , θ ∗2 , and θ ∗3 are unknown constants.
u∗ (s) is obtained explicitly as

u∗ =
b−1 [−θ ∗1 (s−λ )−θ ∗2 ]y

∗+b−1bm (s−λ )r
s−λ +b−1θ ∗3

(6)

Then, the ideal output y∗ (s) is written as

y∗ =
Zp (s)
Rp (s)

[−θ ∗1 (s−λ )−θ ∗2 ]y
∗+bm (s−λ )r

s−λ +b−1θ ∗3
(7)

We consider the following cases: 1) the plant is minimum phase, and 2) the plant is non-minimum phase.

2.1 Minimum Phase Plant
If the plant is minimum phase, then Zp (s) is Hurwitz. Then, the pole-zero cancellation can take place in the left half
plane. Therefore, it follows that

Zp (s) = s−λ +b−1
θ
∗
3 (8)

This results in
θ
∗
3 = b(λ −h)+gm (9)

The ideal controller u∗ (s) then becomes

u∗ =
b−1 [−θ ∗1 (s−λ )−θ ∗2 ]y

∗+b−1bm (s−λ )r
Zp (s)

(10)

The ideal output y∗ (s) is then obtained as

y∗ =
[−θ ∗1 (s−λ )−θ ∗2 ]y

∗+bm (s−λ )r
(s−a)(s−h)−gl

(11)

This results in the following ideal closed-loop transfer function:

y∗

r
=

bm (s−λ )

s2−
(
a+h−θ ∗1

)
s+ah−gl−λθ ∗1 +θ ∗2

(12)

We want the ideal closed-loop plant to track the reference model. So, the ideal closed-loop transfer function must
be equal to the reference model transfer function Wm (s). Thus,

bm (s−λ )

s2−
(
a+h−θ ∗1

)
s+ah−gl−λθ ∗1 +θ ∗2

=
bm

s−am
(13)

This leads to the following model matching conditions:

a+h−θ
∗
1 = λ +am (14)

ah−gl−λθ
∗
1 +θ

∗
2 = λam (15)

θ ∗1 and θ ∗2 are then obtained as
θ
∗
1 = a−am +h−λ (16)

θ
∗
2 = gl−ah+λ (a+h−λ ) (17)

The adaptive controller is now established as

u =−b−1
θ1y− b−1θ2y

s−λ
− b−1θ3u

s−λ
+b−1bmr (18)
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where θ1 (t), θ2 (t), and θ3 (t) are the estimates of θ ∗1 , θ ∗2 , and θ ∗3 , respectively. Let θ̃1 (t) = θ1 (t)− θ ∗1 , θ̃2 (t) =
θ2 (t)−θ ∗2 , and θ̃3 (t) = θ3 (t)−θ ∗3 . Then, the output y(s) of the closed-loop system is expressed as

y =Wm (s)r−Wm (s)
bm

(
θ̃1y+

θ̃2y
s−λ

+
θ̃3u

s−λ

)
(19)

Define the tracking error as ey (t) = ym (t)− y(t). Then, the tracking error equation is obtained as

ėy = amey + Θ̃
>

Φ(t) (20)

where Θ̃(t) =
[

θ̃1 (t) θ̃2 (t) θ̃3 (t)
]> and Φ(t) =

[
φ1 (t) φ2 (t) φ3 (t)

]> with

φ1 = y (21)

φ̇2 = λφ2 + y (22)

φ̇3 = λφ3 +u (23)

Theorem 1 : The adaptive law given by
Θ̇ =−ΓΦ(t)ey (24)

withΓ = Γ> > 0 is stable for the minimum phase plant in Eq. (79) and results in asymptotic tracking.
Proof: Since both the plant and reference model are minimum phase with the same relative degree 1, the closed-

loop poles are stable which implies Φ(t) is bounded. Suppose Φ(t) is bounded. We choose the Lyapunov candidate
function

V
(
ey,Θ̃

)
= e2

y + Θ̃
>

Γ
−1

Θ̃ (25)

Then,
V̇
(
ey,Θ̃

)
= ame2

y ≤ 0 (26)

Therefore, ey (t) ∈L2 ∩L∞ and Θ̃(t) ∈L∞ are bounded. This implies y(t), u(t), and Φ(t) are bounded. Note
that since V̈

(
ey,Θ̃

)
is bounded since Φ(t) is bounded. Therefore, V̇

(
ey,Θ̃

)
is uniformly continuous. Invoking the

Barbalat’s lemma, it follows that the output tracking error tends to zero asymptotically with ey (t)→ 0 as t→ ∞.

2.2 Non-Minimum Phase Plant
For non-minimum phase plants, because the standard MRAC attempts to seek asymptotic tracking by performing a
pole-zero cancellation in the right half plane, the resulting adaptive controller will become unbounded. Thus, if the
adaptive law can be modified to seek only bounded tracking instead of asymptotic tracking, then this would prevent a
pole-zero cancellation in the right half plane. The plant then can be stabilized.

For non-minimum phase plants, we consider two possible adaptive controllers.

1. We use the same adaptive controller in Eq. (18), but with the optimal control modification adaptive law

Θ̇ =−ΓΦ(t)
[
ey−νΦ

> (t)Θa−1
m

]
(27)

By invoking the linear asymptotic property of the optimal control modification as Γ→ ∞ [4], we get

Θ
>

Φ(t) =
am (ym− y)

ν
(28)

Then, the asymptotic linear controller tends to

u =
amy
νb

+
[νbm−amWm (s)]r

νb
(29)

Comparing the ideal controller with the asymptotic linear controller, we see that the adaptive controller does not
attempt to cancel the unstable zero of Wp (s) since it has a stable pole at s = am due to the term Wm (s), as shown
by the asymptotic closed-loop transfer function

y
r
=

Wp (s) [νbm−amWm (s)]
νb−amWp (s)

(30)
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Otherwise, the pole-zero cancellation would take place in the right half plane since Zp (s) is unstable. Therefore,
the stability of the adaptive controller is no longer affected by the non-minimum phase behavior of Wp (s). The
stability of the closed-loop plant is then determined by a proper selection of the modification parameter ν such
that ν > 0 and the closed-loop transfer function is stable. As Γ→ ∞, the equilibrium value of y(t) tends to

ȳ =
Wp (0) [νbm−amWm (0)]

νb−amWp (0)
r (31)

Thus, the tracking is bounded regardless whether or not Wp (s) is minimum phase. The closed-loop plant there-
fore is robustly stable with the optimal control modification. However, poor tracking will result if ν is too large
to guarantee the closed-loop stability.

2. We use a simple adaptive controller for the first-order SISO plant as if the non-minimum phase dynamics do not
exist with x2 (t) = 0

u(t) = ky (t)y+ krr (32)

where kr = b−1bm and ky (t) is computed by the optimal control modification adaptive law

k̇y = γyy
(
ey +νykyba−1

m
)

b (33)

with γy > 0. By invoking the linear asymptotic property of the optimal control modification, we get

kyy =
am (y− ym)

νb
(34)

Then, the asymptotic linear controller tends to

u =
amy
νb

+
[νbm−amWm (s)]r

νb
(35)

Note that this asymptotic linear controller is the same as that with the first adaptive controller. Thus, even though
the adaptive controllers are different, the closed-loop plants for both controllers behave the same in the limit.

We now will formalize the proof of the optimal control modification for the non-minimum phase plant (2) with relative
degree 1 with a unknown but all the other parameters are known and h < 0. The adaptive controller is given by Eqs.
(32) and (33).

The closed-loop plant becomes
ẏ = amy+bmr+bk̃yy+gz (36)

ż = hz+
(
l +mk∗y

)
y+mk̃yy+mkrr (37)

where k̃y (t) = ky (t)− k∗y and k∗y =
am−a

b .
The output tracking error equation is given by

ėy = amey−bk̃yy−gz (38)

We define the reference internal state dynamics as

żm = hzm +
(
l +mk∗y

)
ym +mkrr (39)

Let ez (t) = zm (t)− z(t) be the internal state tracking error. Then, the internal state tracking error equation is given
by

ėz = hez +
(
l +mk∗y

)
ey−mk̃yy (40)

Theorem 2: The non-minimum phase system (2) can be stabilized by the optimal control modification adaptive
law (33) with a proper selection of the modification parameter ν that results in uniform ultimate boundedness of the
tracking error.

Proof: Choose a Lyapunov candidate function

V
(
ey,ez, θ̃

)
= αe2

y +βe2
z +αγ

−1
y k̃2

y (41)
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where α > 0 and β > 0.
V̇
(
ey,ez, θ̃

)
is evaluated as

V̇
(
ey,ez, θ̃

)
= 2αame2

y−2αg(zm− ez)ey +2βhe2
z +2β

(
l +mk∗y

)
eyez−2βmk̃yyez +2ανb2a−1

m k̃y
(
k̃y + k∗y

)
y2

≤−2α |am|
∥∥ey
∥∥2

+2α |g|‖zm‖
∥∥ey
∥∥−2β |h|‖ez‖2 +2

∣∣αg+β
(
l +mk∗y

)∣∣∥∥ey
∥∥‖ez‖+2β |m|‖y‖

∥∥k̃y
∥∥‖ez‖

−2ανb2 ∣∣a−1
m
∣∣‖y‖2∥∥k̃y

∥∥2
+2ανb2 ∣∣a−1

m
∣∣ ∣∣k∗y ∣∣‖y‖2∥∥k̃y

∥∥ (42)

Using the inequality 2‖a‖‖b‖ ≤ δ 2 ‖a‖2 + ‖b‖
2

δ 2 , we get

V̇
(
ey,ez, θ̃

)
≤−2α |am|

∥∥ey
∥∥2

+2α |g|‖zm‖
∥∥ey
∥∥−2β |h|‖ez‖2 +

∣∣αg+β
(
l +mk∗y

)∣∣(δ
2
1
∥∥ey
∥∥2

+
‖ez‖2

δ 2
1

)

+β |m|
(

δ
2
2 ‖y‖

2∥∥k̃y
∥∥2

+
‖ez‖2

δ 2
2

)
−2ανb2 ∣∣a−1

m
∣∣‖y‖2∥∥k̃y

∥∥2
+2ανb2 ∣∣a−1

m
∣∣ ∣∣k∗y ∣∣‖y‖2∥∥k̃y

∥∥ (43)

Note that the negative definite term −2ανb2
∣∣a−1

m
∣∣‖y‖2∥∥k̃y

∥∥2 of the optimal control modification can be made to

dominate the positive definite term β |m|δ 2
2 ‖y‖

2∥∥k̃y
∥∥2 to enable V̇

(
e, θ̃ ,z

)
to be negative definite.

Let c1 = 2α |am| −
∣∣αg+β

(
l +mk∗y

)∣∣δ 2
1 , c2 = 2β |h| − |αg+β(l+mk∗y)|

δ 2
1

− β |m|
δ 2

2
, c3 = 2ανb2

∣∣a−1
m
∣∣− β |m|δ 2

2 , and

c4 =
ανb2|a−1

m ||k∗y |
c3

. Then,

V̇
(
ey,ez, θ̃

)
≤−c1

∥∥ey
∥∥2

+2α |g|‖zm‖
∥∥ey
∥∥− c2 ‖ez‖2− c3 ‖y‖2 (∥∥k̃y

∥∥− c4
)2

+ c3c2
4 ‖y‖

2 (44)

We note that ‖y‖2 ≤
∥∥ey
∥∥2

+ 2
∥∥ey
∥∥‖ym‖+ ‖ym‖2. The ultimate bounds of ‖ym‖ and ‖zm‖ can be shown to

be ‖ym‖ ≤ cyr0 and ‖zm‖ ≤ czr0 where cy =
∣∣a−1

m bm
∣∣, cz =

∣∣h−1mkr
∣∣+ ∣∣h−1

(
l +mk∗y

)∣∣ ∣∣a−1
m bm

∣∣, and r0 = ‖r‖. Let

c5 = c1− c3c2
4, c6 =

(α|g|cz+c3c2
4cy)r0

c5
, and c7 = c5c2

6 + c3c2
4c2

yr2
0. Then,

V̇
(
ey,ez, θ̃

)
≤−c5

(∥∥ey
∥∥− c6

)2− c2 ‖ez‖2− c3 ‖y‖2 (∥∥k̃y
∥∥− c4

)2
+ c7 (45)

ν , α , β , δ1, and δ2 are chosen such that c2 > 0, c3 > 0, and c5 > 0. Then, it follows that V̇
(
ey,ez, θ̃

)
≤ 0 if

∥∥ey
∥∥≥ c6 +

√
c7

c5
= p (46)

‖ez‖ ≥
√

c7

c2
= q (47)

∥∥k̃y
∥∥≥ c4 +

√
c7

c3 (p+ cyr0)
2 = κ (48)

The ultimate bound of
∥∥ey
∥∥ is then obtained as

∥∥ey
∥∥≤√p2 +

β

α
q2 + γ

−1
y κ2 (49)

Thus, the closed-loop non-minimum phase system is stable with output feedback adaptive control with the optimal
control modification.

�
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It should be noted that the aforementioned output feedback adaptive control design is feasible only if the knowledge
of the plant transfer function is mostly known with the exception of the parameter a. This requirement imposes a severe
restriction on the design of output feedback adaptive control for non-minimum phase plants since in many cases such
knowledge may not exist if the plants are uncertain. Another drawback with this approach is that the desired tracking
performance is not guaranteed. In practical situations, this poor tracking performance can be a major issue.

Example 1: Consider the system (2) with a < 0 is unknown but a = −2 for simulation purposes, and b = 1 is
known. The reference model is given by the transfer function Wm (s) with am =−1 and bm = 1.

The open-loop transfer function is

Wp (s) =
s+1+g

(s−a)(s+1)

The system is minimum phase if g >−1. Consider a minimum phase plant with g = 2. Then, we design the output
feedback adaptive controller according to Eq. (18). Let λ =−1, Γ = I, and r (t) = 1. Figure 1 shows the response of
the closed-loop plant which tracks the reference model very well in the limit as t→ ∞.

0 5 10 15 20
0

0.5

1

1.5

t

y
, 

y m

 

 

y
y

m

0 5 10 15 20
0

0.5

1

t

u

Figure 1: Closed-Loop Response of Minimum Phase Plant with MRAC

Consider a non-minimum phase plant with g =−2. We use both adaptive controllers given by Eq. (18) and (32).
The asymptotic closed-loop transfer function is given by

y
r
=

(s−1) [νbm (s−am)−ambm]

(s−am) [ν (s−a)(s+1)−am (s−1)]

The steady-state closed-loop transfer function is equal to

ȳ
r
=

bm (ν +1)
νa−am

For a = −2 and am = −1, the transfer function is stable for ν > 0.5. Choose ν = 2 and γy = 1. The steady-
state closed-loop output is equal to ȳ(t) =−1. Figure 2 shows the stable closed-loop responses of the non-minimum
phase plant with both the adaptive controllers. The adaptive controller 1 with the adaptive parameter Θ(t) has a faster
response than the adaptive controller 2 with the adaptive parameter ky (t). Both adaptive controllers tend to the same
steady-state closed-loop response.The closed-loop plant tracks the reference model very poorly as expected, but the
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response is stable and tends to an equilibrium value ȳ = −1 which agrees with the analytical result from the steady-
state closed-loop transfer function. The poor tracking performance is typical of a non-minimum phase system with the
output generally exhibiting an opposite response to the input.

0 5 10 15 20
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−0.5

0

0.5

1

t

y
, 

y m

 

 

0 5 10 15 20
0

0.5

1

1.5

2

t

u

 

 

y − Controller 1

y − Controller 2
y

m

u − Controller 1

u − Controller 2

Figure 2: Closed-Loop Response of Non-Minimum Phase Plant with Optimal Control Modification

3 Output Feedback Adaptive Control of Non-SPR MIMO Systems with Uni-
form Relative Degree 1

Given the following MIMO system

ẋ = Ax+Bu⇔
[

ẋ1
ẋ2

]
=

[
A11 A12
A21 A22

][
x1
x2

]
+

[
B1
B2

]
u

y =Cx =
[

C1 0
][ x1

x2

]
=C1x1

(50)

where x1 (t) ∈ Rp, x2 (t) ∈ Rn−p, u(t) ∈ Rm, y(t) ∈ Rp with p ≤ m, A11 ∈ Rp×p is unknown, A12 ∈ Rp×(n−p) and
A21 ∈ R(n−p)×p are known, A22 ∈ R(n−p)×(n−p) ∈ C− is known and assumed to be Hurwitz, B1 ∈ Rp×m is known
and has full rank, B2 ∈ R(n−p)×m is known, and C1 ∈ Rp×p is known and has full rank. We assume the pair (A,B) is
controllable and the pair (A,C) is observable. This partitioned form of the plant can be used advantageously to design
an output feedback adaptive control. The system expressed in this form is sufficiently general for many practical
applications. For example, systems with unmodeled dynamics could be expressed in this form with x1 (t) being the
plant state variable and x2 (t) being the unmodeled state variable.

Expressed in this form, the MIMO system (50) has a uniform relative degree 1 since u(t) appears in the first
derivative of y(t)

ẏ =C1ẋ1 =C1A11C−1
1 y+C1A12x2 +C1B1u (51)

and rank(C1B1) = p which implies that C1B1 is invertible . The condition of invertibility of C1B1 allows the design
of a model-following output feedback controller for the output y(t) to track a reference model of the same relative
degree.

The Kalman-Yakubovich lemma [8] can be used to determine if the transfer function matrix G(s) =C (sI−A)−1 B
is SPR. If A is Hurwitz and there exist P = P> ∈ Rn×n > 0 and Q = Q> > 0 ∈ Rr×n such that

PA+A>P =−Q (52)
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B>P =C (53)

then G(s) is SPR. Equation (53) leads to the following necessary and sufficient condition for a SPR transfer function
matrix [9]:

B>PB =CB > 0 (54)

The condition CB > 0 requires CB to be a symmetric positive definite square matrix. G(s) is non-SPR for this
system if p < m and SPR if p = m and CB =C1B1 > 0.

The objective is to design an output feedback to track the following reference model:

ẏm = Amym +Bmr (55)

where Am ∈Rp×p is Hurwitz and r (t) ∈Rq ∈L∞ with q≤m is a bounded command signal. Furthermore, the transfer
function matrix Gm (s) = (sI−Am)

−1 Bm is assumed to be SPR. If G(s) is non-SPR and Gm (s) is SPR, there is no
guarantee of a stable adaptation for output feedback adaptive control. However, under a certain condition, a stable
adaptation for output feedback adaptive control is possible.

Toward establishing this condition, the dynamics of the output can be expressed as

ẏ =C1A11C−1
1 y+C1A12x2 +C1B1u (56)

Let x2 (t) = Φy (t)+Φu (t) where Φy (t) ∈ Rn−p and Φu (t) ∈ Rn−p have the following dynamics

Φ̇y = A22Φy +A21C−1
1 y (57)

Φ̇u = A22Φu +B2u (58)

The ideal output feedback controller can be computed as

u∗ = (C1B1)
+ [Bmr+

(
Am−C1A11C−1

1
)

y−C1A12 (Φy +Φu)
]

(59)

where (C1B1)
+ = (C1B1)

>
[
(C1B1)(C1B1)

>
]−1

is the pseudo inverse of C1B1 which is non-singular for p ≤ m. This
is effectively an optimal control allocation strategy when the number of inputs exceeds the number of outputs.

The adaptive controller is then given by

u =−(C1B1)
+
(

Θ
>
y y+Θ

>
Φy Φy +Θ

>
ΦuΦu +Θ

>
r r
)
=−(C1B1)

+
Θ
>

Φ(y,u,r) (60)

where Θ(t) =
[

Θ>y (t) Θ>
Φy

(t) Θ>
Φu

(t) Θ>r (t)
]>
∈ R(2n−p+q)×m and Φ(y,u,r) =

[
y> (t) Φ>y (t) Φ>u (t)

r> (t)
]> ∈ R2n−p+q. Let Θ∗ be the ideal unknown matrix. Then, the model matching condition results in Θ∗y =

−
(
Am−C1A11C−1

1

)>
, Θ∗

Φy
= (C1A12)

>, Θ∗
Φu

= (C1A12)
>, and Θ∗r =−B>m .

The output tracking error is defined as ey (t) = ym (t)− y(t). Then,

ėy = Amey + Θ̃
>

Φ(y,u) (61)

The output feedback adaptive law for the standard MRAC is given by

Θ̇ =−ΓΦ(y,u,r)e>y P (62)

where P = P> > 0 solve the Lyapunov equation

PAm +A>mP =−Q (63)

and Q = Q> > 0.
We now state the following theorem for a stable adaptation for the standard MRAC.
Theorem 3: Let F∗1 = −B2 (C1B1)

+
Θ∗>y , F∗2 = −B2 (C1B1)

+
Θ∗>

Φy
, F∗3 = A22 − B2 (C1B1)

+
Θ∗>

Φu
, and

F∗4 = −B2 (C1B1)
+

Θ∗>r , then the MIMO system (50) with the ideal controller is stable if λ (F∗3 ) ∈ C−, that is, F∗3
is Hurwitz.
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Proof: The combined dynamics of the output feedback control system due to the ideal controller are obtained as ẏm
Φ̇∗y
Φ̇∗u

=

 Am 0 0
A21C−1

1 A22 0
F∗1 F∗2 F∗3


︸ ︷︷ ︸

F∗

 ym
Φ∗y
Φ∗u

+
 Bm

0
F∗4

r (64)

The eigenvalues of F∗ are computed from the following determinant formula:

det(F∗− sI) = det
([

Am− sI 0
A21C−1

1 A22− sI

])
det

(
F∗3 − sI−

[
F∗1 F∗2

][ Am− sI 0
A21C−1

1 A22− sI

]−1 [ 0
0

])
= det(Am− sI)det(A22− sI)det(F∗3 − sI) (65)

Since Am and A22 are Hurwitz, then F∗ is Hurwitz if λ (F∗3 ) ∈ C−. Therefore, the output feedback control system
is stable if Φ(y,u,r) is bounded which requires λ (F∗3 ) ∈ C−.

Let z(t) =
[

Φ>y (t) Φ>u (t)
]> ∈ R2n−2p and define ez (t) = z∗ (t)− z(t). Then,

ėz = F∗22ez +F∗21ey +EΘ̃
>

Φ(y,u,r) (66)

where F∗21 =

[
A21C−1

1
F∗1

]
, F∗22 =

[
A22 0
F∗2 F∗3

]
, and E =

[
0

B2 (C1B1)
+

]
.

Suppose Φ(y,u,r) is bounded which requires F∗3 to be Hurwitz and implies that ez (t) is also bounded. Then, we
choose the Lyapunov candidate function

V
(
ey,Θ̃

)
= e>y Pey + trace

(
Θ̃
>

Γ
−1

Θ̃

)
(67)

Then,
V̇
(
ey,Θ̃

)
=−e>y Qey ≤−λmin (Q)

∥∥ey
∥∥2 ≤ 0 (68)

Therefore, ey (t) ∈ L2 ∩L∞ and Θ̃(t) ∈ L∞ are bounded. This implies Eq. (66) admits a bounded solution of
ez (t) which validates the supposition of boundedness of Φ(y,u,r). Note that V̈

(
ey,Θ̃

)
is bounded since Φ(y,u,r)

is bounded. Therefore, V̇
(
ey,Θ̃

)
is uniformly continuous. Invoking the Barbalat’s lemma, it follows that the output

tracking error tends to zero asymptotically with ey (t) → 0 as t → ∞. This also implies Θ̃> (t)Φ(y,u,r) → 0 as
ey (t)→ 0. Therefore, ez (t)→ 0 as t → ∞ if λ (F∗3 ) ∈ C−. It is obvious that, if λ (F∗3 ) /∈ C−, then Φ(y,u,r) is
unbounded and the standard MRAC output feedback adaptive law is unstable.

�

To achieve a stable adaptation for the non-SPR plant (50) with λ (F∗3 ) /∈ C−, the optimal control modification to
the adaptive law in Eq. (61) is proposed as

Θ̇ =−ΓΦ(y,u,r)
[
e>y P−νΦ

> (y,u,r)ΘPA−1
m

]
(69)

where ν > 0.
We examine the linear asymptotic property of the optimal control modification adaptive law as Γ→ ∞. Then, in

the limit, one gets

Θ̄
>

Φ(y,u,r) =
1
ν

P−1A>mPey (70)

where the bar symbol denotes the value in the limit.
The closed-loop system in the limit is now defined by ˙̄y

˙̄
Φy
˙̄
Φu

=

 C1A11C−1
1 + 1

ν
P−1A>mP C1A12 C1A12

A21C−1
1 A22 0

1
ν

B2 (C1B1)
+ P−1A>mP 0 A22


︸ ︷︷ ︸

G

 ȳ
Φ̄y
Φ̄u

+
 Bm

0
B2 (C1B1)

+ Bm

r

− 1
ν

 P−1A>mP
0

B2 (C1B1)
+ P−1A>mP

ym (71)
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Then, a stable adaptation can be achieved with the optimal control modification by a suitable selection of ν such
that λ (G) ∈ C−. We express the error equation for z(t) as

ėz = Azzez +Azyey +EΘ̃
>

Φ(y,u,r) (72)

where Azz =

[
A22 0
0 A22

]
and Azy =

[
A21C−1

1
0

]
.

Theorem 4: The optimal control modification adaptive law is stable for the non-SPR plant (50) with λ (F∗3 ) /∈C−
by a suitable selection of the modification ν such that ‖Φ(y,u,r)‖ ≤ Φ0 ∈L∞. Then, ey (t) is uniformly ultimately
bounded.

Proof: Choose a Lyapunov candidate function

V
(
ey,ez,Θ̃

)
= e>y Pey + e>z Wez + trace

(
Θ̃
>

Γ
−1

Θ̃

)
(73)

where W =W> > 0 that solves the Lyapunov equation

WAzz +A>zzW =−R (74)

with R = R> > 0.
Then,

V̇
(
ey,ez,Θ̃

)
=−e>y Qey− e>z Rez +2e>z WAzyey +2e>z WEΘ̃

>
Φ(y,u,r)+2νΦ

> (y,u,r)ΘPA−1
m Θ̃

>
Φ(y,u,r) (75)

Let c1 = λmin (Q), c2 = λmin (R), c3 =
∥∥WAzy

∥∥, c4 = ‖WE‖, c5 = νλmin
(
A−>m QA−1

m
)
, and c6 = ν

∥∥PA−1
m
∥∥‖Θ∗‖.

Then, V̇
(
ey,ez,Θ̃

)
is bounded by

V̇
(
ey,ez,Θ̃

)
≤−

(
c1−

c3

δ 2

)∥∥ey
∥∥2−

(
c2− c3δ

2− c4ε
2)‖ez‖2−

(
c5−

c4

ε2

)
‖Φ(y,u,r)‖2∥∥Θ̃

∥∥2

+2c6 ‖Φ(y,u,r)‖2∥∥Θ̃
∥∥ (76)

Note that ‖Φ(y,u,r)‖2 ≤ ‖y‖2 +‖z‖2 + r2
0 ≤

∥∥ey
∥∥2

+2cyr0
∥∥ey
∥∥+‖ez‖2 +2czr0 ‖ez‖+

(
1+ c2

y + c2
z
)

r2
0. Then,

V̇
(
ey,ez,Θ̃

)
≤−

(
c1−

c3

δ 2 −
c2

6
c5− c4

ε2

)∥∥ey
∥∥2

+
2c2

6cyr0

c5− c4
ε2

∥∥ey
∥∥−(c2− c3δ

2− c4ε
2−

c2
6

c5− c4
ε2

)
‖ez‖2

+
2c2

6czr0

c5− c4
ε2
‖ez‖−

(
c5−

c4

ε2

)
‖Φ(y,u,r)‖2

(∥∥Θ̃
∥∥− c6

c5− c4
ε2

)2

+
c2

6
(
1+ c2

y + c2
z
)

r2
0

c5− c4
ε2

(77)

Let c7 = c1− c3
δ 2 −

c2
6

c5−
c4
ε2

, c8 =
c2

6cyr0

c7

(
c5−

c4
ε2

) , c9 = c2− c3δ 2− c4ε2− c2
6

c5−
c4
ε2

, c10 =
c2

6czr0

c9

(
c5−

c4
ε2

) , c11 = c5− c4
ε2 , c12 =

c6
c5−

c4
ε2

, and c13 =
c2

6(1+c2
y+c2

z)r2
0

c5−
c4
ε2

. Choose Q, R, ν , δ , and ε such that c7 > 0, c9 > 0, and c11 > 0. Then, V̇
(
ey,ez,Θ̃

)
≤ 0

outside the compact set

S =

{
ey (t) ∈ Rp, ez (t) ∈ R2n−2p, Θ̃(t) ∈ R(2n−p+q)×m : c7

(∥∥ey
∥∥− c8

)2
+ c9 (‖ez‖− c10)

2

+ c11 ‖Φ(y,u,r)‖2 (∥∥Θ̃
∥∥− c12

)2 ≤ c7c2
8 + c9c2

10 + c13

}
(78)

if ∥∥ey
∥∥≥ c8 +

√
c7c2

8 + c9c2
10 + c13

c7
= p (79)
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‖ez‖ ≥ c10 +

√
c7c2

8 + c9c2
10 + c13

c9
= q (80)

∥∥Θ̃
∥∥≥ c12 +

√
c7c2

8 + c9c2
10 + c13

c11Φ2
0

= κ (81)

where Φ2
0 = (p+ cyr0)

2 +(q+ czr0)
2 + r2

0.
Therefore, the optimal control modification adaptive law is stable and all signals are uniformly ultimately bounded.

The ultimate bound of the output tracking error is determined to be

∥∥ey
∥∥≤√λmax (P) p2 +λmax (W )q2 +λmax (Γ−1)κ2

λmin (P)
(82)

�

Example 2: Given

A =


0 1 −1 0
−1 −4 0 g
0 0 0 1
0 0 −5 −10

 , B =


0 1 0
1 2 −1
2 0 0
3 4 0

 , C =

[
1 2 0 0
2 1 0 0

]
, D =

[
0 0 0
0 0 0

]

Am =

[
0 1
−2 −4

]
, Bm =

[
0
2

]
If g =−1, then λ (F∗3 ) =−3.6492,−6.8508. Then, the standard MRAC update law with Γ = 1.01I is used for the

output feedback adaptive controller. The response of the closed-loop plant to a unit step command is stable as shown
in Fig. 3. The output y(t) asymptotically tracks the reference model ym (t).
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Figure 3: Closed-Loop Response of Non-SPR Plant λ (F∗3 ) ∈ C− with Output Feedback MRAC

If g =−10, then λ (F∗3 ) = 1.5±5.6347i. The standard MRAC update law results in unbounded signals. Figure 4
shows the response of the closed-loop plant with the standard MRAC update law which is oscillatory but eventually
diverges as t increases. The optimal control modification adaptive law, on the other hand, is able to stabilize the
non-SPR plant with ν = 0.1 as shown in Fig. 5.
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Figure 4: Closed-Loop Response of Non-SPR Plant λ (F∗3 ) /∈ C− with Output Feedback MRAC
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Figure 5: Closed-Loop Response of Non-SPR Plant λ (F∗3 ) /∈ C− with Optimal Control Modification

4 Observer-Based Output Feedback Adaptive Control
As can be seen from the Example 1, while the optimal control modification can stabilize a non-minimum phase plant,
the tracking performance is quite unacceptable. The issue at hand is the requirement for a non-minimum phase plant
to track a minimum phase reference model with the same relative degree. This is a very demanding and perhaps
unrealistic requirement. As a consequence, MRAC attempts to seek asymptotic tracking which results in an unstable
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pole-zero cancellation. If the reference model could be redesigned so that the unstable pole-zero cancellation cannot
occur while the tracking performance can still be met, then the output feedback adaptive control design would be more
acceptable. One such approach is to design an observer state feedback adaptive control using the Luenberger observer
design.

Consider the same MIMO system in Section 3

ẋ = Ax+Bu
y =Cx (83)

where x(t) ∈Rn, u(t) ∈Rm, y(t) ∈Rp with p > m, A ∈Rn×Rn is Hurwitz but unknown, B ∈Rn×Rm is known with
the pair (A,B) controllable, and C ∈ Rp×Rn is known with the pair (A,C) observable. We assume that A = A0 +∆A
where A0 is known and ∆A is an unknown perturbation of Ā. The transfer function G(s) =C (sI−A)−1 B is assumed
to be non-SPR phase.

The Luenberger observer design constructs an observer state-space model of the plant as

˙̂x = Âx̂+L(y− ŷ)+Bu (84)

where x̂(t) is the observer state which estimates the plant state x(t), Â(t) is the estimate of A, ŷ(t) = Cx̂(t) is the
observer output which estimates the plant output y(t), and L is the Kalman filter gain matrix computed using A0.

A full-state feedback controller can be designed to enable the output y(t) to track a reference command signal
r (t). For example, we can use the LQR method to design the full-state feedback controller using the following cost
function for tracking a constant reference command signal r (t):

J = lim
t f→∞

1
2

∫ t f

0

[
(Cx− r)>Q(Cx− r)+u>Ru

]
dt (85)

Then, the control gains can be computed as

K∗x =−R−1B>W (86)

Kr =−R−1B>
(

A>−WBR−1B>
)−1

C>Q (87)

where W is the solution of the Riccati equation

WA+A>W −WBR−1B>W +C>QC = 0 (88)

Then, a reference model is constructed from this LQR design with Am = A+BK∗x and Bm = BKr.
If A is unknown, then we can design the following adaptive controller:

u = Kx (t) x̂+Krr (89)

where the observer state x̂(t) replaces the plant state.
The tracking error is defined as e(t) = xm (t)− x̂(t). We also define the state estimation error as ep (t) = x(t)− x̂(t).

Then, the error equations are
ė = Ame−LCep− Ãx̂−BK̃xx̂ (90)

ėp = (Ap +∆A)ep− Ãx̂ (91)

where Ã(t) = Â(t)−A, K̃x (t) = Kx (t)−K∗x , Ap = A0−LC, and Ap +∆A is Hurwitz by a suitable choice of L.
Note that the state estimation error signal ep (t) is generally not available, but for the class of MIMO systems under

consideration, it can be constructed. Since C1 is invertible, then x1 (t) can be constructed from y(t). Let z(t) = x2 (t)
be the internal state, then z(t) can be computed from the following equation:

ż = A22z+A21C−1
1 y+B2u (92)

with z(0) = z0 and A21, A22, and B2 known.
Then, the plant state can be constructed as x(t) =

[
C−1

1 y(t) z(t)
]
.
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The stability of the observer output feedback adaptive control using the optimal control modification is now pro-
vided by the following theorem:

Theorem 5: A stable adaptation of the non-SPR plant (83) can be achieved by the optimal control modification
adaptive laws based on the observer state x̂(t) and the constructed state x(t) from the output y(t) and the internal state
z(t)

K̇>x = Γxx̂
(

e>P+ν x̂>K>x B>PA−1
m

)
B (93)

˙̂A> = ΓAx̂
(

e>P+ e>p W +η x̂>Â>PA−1
m

)
(94)

where P = P> > 0 and W =W> > 0 are solutions to the Lyapunov equations

PAm +A>mP =−Q (95)

WAp +A>p W =−R (96)

with Q = Q> > 0 and R = R> > 0.
Proof: Choose a Lyapunov candidate function

V
(
e,ep, K̃x, Ã

)
= e>Pe+ e>p Wep + trace

(
K̃xΓ

−1
x K̃>x

)
+ trace

(
ÃΓ
−1
A Ã>

)
(97)

Then, V̇
(
e,ep, K̃x,∆Ã

)
is evaluated as

V̇
(
e,ep, K̃x, Ã

)
=−e>Qe− e>p R̄ep−2e>PLCep +2ν x̂>K>x B>PA−1

m BK̃xx̂+ην x̂>Â>PA−1
m Ãx̂

≤−c1 ‖e‖2− c2
∥∥ep
∥∥2

+2c3 ‖e‖
∥∥ep
∥∥−νc4 ‖x̂‖2 (∥∥K̃x

∥∥− c5
)2

+νc4c2
5 ‖x̂‖

2

−ηc6 ‖x̂‖2 (∥∥Ã
∥∥− c7

)2
+ηc6c2

7 ‖x̂‖
2 (98)

where R̄=R−W∆A−∆A>W , c1 = λmin (Q), c2 = λmin (R̄), c3 = ‖PLC‖, c4 = λmin
(
B>A−>m QA−1

m B
)
, c5 =

‖K∗>x B>PA−1
m B‖

c4
,

c6 = λmin
(
A−>m QA−1

m
)
, c7 =

‖A>PA−1
m ‖

c6
.

We utilize the inequality 2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2 and also note that ‖x̂‖2 ≤ ‖e‖2 + 2‖e‖‖xm‖+ ‖xm‖2. Then,
V̇
(
e,ep, K̃x, Ã

)
is bounded by

V̇
(
e,ep, K̃x, Ã

)
≤−

(
c1− c3−νc4c2

5−ηc6c2
7
)
‖e‖2 +2

(
νc4c2

5 +ηc6c2
7
)
‖e‖‖xm‖− (c2− c3)

∥∥ep
∥∥2

−νc4 ‖x̂‖2 (∥∥K̃x
∥∥− c5

)2−ηc6 ‖x̂‖2 (∥∥Ã
∥∥− c7

)2
+
(
νc4c2

5 +ηc6c2
7
)
‖xm‖2 (99)

Note that the ultimate bound of ‖xm‖ can be expressed as ‖xm‖ ≤ cxr0. Let c8 = c1− c3− νc4c2
5−ηc6c2

7, c9 =
(νc4c2

5+ηc6c2
7)cxr0

c8
, c10 = c2−c3, and c11 = c8c2

9 +
(
νc4c2

5 +ηc6c2
7
)

c2
xr2

0. Then, V̇
(
e,ep, K̃x, Ã

)
≤ 0 outside the compact

set

S =

{
e(t) ∈ Rn, ep (t) ∈ Rn, K̃x (t) ∈ Rn×m, Ã(t) ∈ Rn×n : c8 (‖e‖− c9)

2 + c10
∥∥ep
∥∥2

+νc4 ‖x̂‖2 (∥∥K̃x
∥∥− c5

)2
+ηc6 ‖x̂‖2 (∥∥Ã

∥∥− c7
)2 ≤ c11

}
(100)

by choosing L, Q, R, ν , and η appropriately such that c8 > 0 and c10 > 0.
By setting ν = 0 and η = 0, we recover the standard MRAC. Then, it can be shown by Barbalat’s lemma that

V̇
(
e,ep, K̃x, Ã

)
is uniformly continuous since V̈

(
e,ep, K̃x, Ã

)
is bounded. It follows that e(t)→ 0 and ep→ 0 as t→∞.

�
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Remark: If the reference model is not derived from the ideal controller of the non-SPR plant, the standard MRAC
will not be able to stabilize the plant. On the other hand, the optimal control modification adaptive law can handle
the mismatch between the plant and the reference model. Therefore, for a stable adaptation using the standard MRAC
for output feedback adaptive control, the reference model must be established from the ideal controller design of the
non-SPR plant. The mismatch between the reference model and the non-SPR plant causes MRAC to continue to seek
a high-gain control in order to achieve asymptotic tracking. This would lead to instability.

Suppose a reference model is specified as

ẋm = A∗mxm +Bmr (101)

where A∗m is not established from the non-SPR plant. Then, the model matching condition cannot be satisfied since
there exists no solution of K∗x . To show this, we see that suppose K∗x exists and can be solved using the pseudo-inverse
of B with m < p < n as

K∗x =
(

B>B
)−1

B> (A∗m−A) (102)

But
A+BK∗x = A+B

(
B>B

)−1
B> (A∗m−A) 6= A∗m (103)

For the standard MRAC, the tracking error equation in the presence of the mismatch between the reference model
and the non-SPR plant is established as

ė = A∗me+(A∗m−Am) x̂−LCep− Ãx̂−BK̃xx̂ (104)

Because the optimal control modification only seeks bounded tracking, so the model matching condition is not
satisfied. Using the linear asymptotic property of the optimal control modification, the asymptotic value of Kx (t) and
Â(t) can be computed from Eqs. (93) and (94) by letting Γ→ ∞. Then, Kx (t)→ K̄x and Â(t)→ Ā for a constant
reference command signal. From the linear asymptotic property, we get

K̄xx̂ =− 1
ν

(
B>A∗−>m PB

)−1
B>Pe (105)

Āx̂ =− 1
η

P−1A∗>m (Pe+Wep) (106)

where P = P> > 0 now solves the Lyapunov equation

PA∗m +A∗>m P =−Q (107)

We redefine the estimation errors as K̃x (t) = Kx (t)− K̄x and Ã(t) = Â(t)− Ā. Then, the error equations are
established as

ė =
[

A∗m +
1
ν

B
(

B>A∗−>m PB
)−1

B>P+
1
η

P−1A∗>m P
]

e−
(

LC− 1
η

P−1A∗>m W
)

ep +A∗mx̂− Ãx̂−BK̃xx̂ (108)

ėp =
1
η

P−1A∗>m Pe+
(

Ap +∆A+
1
η

P−1A∗>m W
)

ep +Ax̂− Ãx̂ (109)

The instability of the standard MRAC and the bounded tracking of the closed-loop system with the optimal control
modification can be stated in the following theorem:

Theorem 6: The standard MRAC results in instability due to the mismatch between the SPR reference model and
the non-SPR plant if A+BK∗x = Am 6= A∗m and PAm+A>mP≮ 0, whereas a stable adaptation of the plant can be achieved
with the optimal control modification.

Proof: Choose the same Lyapunov candidate function in Eq. (97). Then, for the standard MRAC, V̇
(
e,ep, K̃x, Ã

)
is evaluated as

V̇
(
e,ep, K̃x, Ã

)
= e>

(
PA∗m +A∗>m P

)
e+ e>P(A∗m−Am) x̂+ x̂>

(
A∗>m −A>m

)
Pe−2e>PLCep− e>p R̄ep (110)
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Upon substituting x̂(t) = xm (t)− e(t), we get

V̇
(
e,ep, K̃x, Ã

)
= e>

(
PAm +A>mP

)
e+2e>P(A∗m−Am)xm−2e>PLCep− e>p R̄ep (111)

Note that PAm +A>mP is not necessarily negative definite. Therefore,

V̇
(
e,ep, K̃x, Ã

)
≤
∥∥∥PAm +A>mP

∥∥∥‖e‖2 +‖P(A∗m−Am)‖
(
‖e‖2 +‖xm‖2

)
+ c3

(
‖e‖2 +

∥∥ep
∥∥2
)
− c2

∥∥ep
∥∥2 (112)

Thus, V̇
(
e,ep, K̃x, Ã

)
� 0. Therefore, the tracking error is unbounded and the closed-loop system is unstable.

On the other hand, for the optimal control modification, V̇
(
e,ep, K̃x, Ã

)
is evaluated as

V̇
(
e,ep, K̃x, Ã

)
= e>

{
− 1

η
Q+

1
ν

PB
[(

B>A∗−>m PB
)−1

+
(

B>A∗−>m PB
)−>]

B>P
}

e>+2e>PA∗mxm

−2e>
[

PLC− 1
η

(
A∗>m +PA∗mP−1

)
W +A>W

]
ep + e>p

[
−R̄+

1
η

W
(

P−1A∗>m +A∗mP−1
)

W
]

ep

+2e>p WAxm +2ν x̂>K>x B>PA−1
m BK̃xx̂+ην x̂>Â>PA−1

m Ãx̂ (113)

Note that P−1A∗>m +A∗mP−1 =−P−1QP−1. Then,

V̇
(
e,ep, K̃x, Ã

)
≤−c12 ‖e‖2− c13

∥∥ep
∥∥2

+2c14 ‖e‖
∥∥ep
∥∥+2c15 ‖e‖+2c16

∥∥ep
∥∥−νc4 ‖x̂‖2 (∥∥K̃x

∥∥− c5
)2

+νc4c2
5 ‖x̂‖

2−ηc6 ‖x̂‖2 (∥∥Ã
∥∥− c7

)2
+ηc6c2

7 ‖x̂‖
2 (114)

where c12 = λmin

(
1
η

Q− 1
ν

PB
[(

B>A∗−>m PB
)−1

+
(
B>A∗−>m PB

)−>]B>P
)

, c13 = λmin

(
R̄− 1

η
WP−1QP−1W

)
, c14 =∥∥∥PLC+ 1

η
QP−1W +A>W

∥∥∥, c15 = ‖PA∗m‖cxr0, c16 = ‖WA‖cxr0, and c4,5,6,7 are defined previously.

Further simplification using ‖x̂‖2 ≤ ‖e‖2 +2‖e‖‖xm‖+‖xm‖2 leads to

V̇
(
e,ep, K̃x, Ã

)
≤−c17 (‖e‖− c18)

2− c19
(∥∥ep

∥∥− c20
)2−νc4 ‖x̂‖2 (∥∥K̃x

∥∥− c5
)2−ηc6 ‖x̂‖2 (∥∥Ã

∥∥− c7
)2

+ c21 (115)

where c17 = c12− c14− νc4c2
5−ηc6c2

7, c18 =
c15+(νc4c2

5+ηc6c2
7)cxr0

c17
, c19 = c13− c14, c20 = c16

c19
, and c21 = c17c2

18 +

c19c2
20 +

(
νc4c2

5 +ηc6c2
7
)

c2
xr2

0.
Choose L, Q, R, ν , and η such that c17 > 0 and c19 > 0. Then, V̇

(
e,ep, K̃x, Ã

)
≤ 0 outside a compact set. Therefore,

the closed-loop system is uniformly ultimately bounded with the optimal control modification.

�

Using the linear asymptotic property of the optimal control modification, L, Q, ν and η can also be chosen such
that the asymptotic closed-loop matrix formed by

(
ẋ(t) , ˙̂x(t)

)
Ac =

[
A 1

ν
B
(
B>A∗−>m PB

)−1 B>P
LC− 1

η
P−1A∗>m W −LC+ 1

ν
B
(
B>A∗−>m PB

)−1 B>P+ 1
η

P−1A∗>m (P+W )

]
(116)

is Hurwitz.
To demonstrate the observer state feedback adaptive control, we return to Example 1.
Example 3: The non-minimum phase plant in Example 1 is defined by the following matrices:

A =

[
a g
0 −1

]
, B =

[
b
1

]
,C =

[
1 0

]
where a =−2, b = 1, and g =−2.
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The Kalman filter gain is computed with Ā =

[
0 g
0 −1

]
as

L =

[
1.5440
−0.3460

]
Using Q = 100 and R = 1, the LQR control gains are obtained as

K∗x =
[
−2.7327 −5.4654

]
, kr =−9.8058

Choose Γx = I, ΓA = 0.1I, Q = I, and R = I. Figure 6 shows the closed-loop response with the standard MRAC
of the plant output y(t) which tracks the redesigned reference model very well. Notice that the reference model now
has a non-minimum phase behavior as evidenced by the reversal in the initial response. All the control and adaptive
parameter signals are bounded.

Suppose, instead of the reference model computed from the LQR, we use the ideal minimum phase first-order
reference model described by the following matrices:

A∗m =

[
am 0
0 −1

]
, B =

[
bm
0

]
Figure 7 shows the unstable closed-loop response with the standard MRAC which no longer tracks the reference

model. The adaptive parameters are unbounded and drifting as t→ ∞.
The optimal control modification is then used with ν =η = 0.08 selected. Figure 8 shows the closed-loop response

with the optimal control modification which is able to track the ideal minimum phase reference model very well. All
the control and adaptive parameter signals are bounded.

Figure 6: Closed-Loop Output Response to LQR Non-Minimum Phase Reference Model with Observer State Feed-
back MRAC
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Figure 7: Closed-Loop Output Response to Ideal Minimum Phase Reference Model with Observer State Feedback
MRAC

Figure 8: Closed-Loop Output Response to Ideal Minimum Phase Reference Model with Optimal Control Modifica-
tion

�

This example illustrates the significance of the reference model in adaptive control of non-minimum phase plants.
If the reference model can be redesigned to fully account for the non-minimum phase behavior, then the standard
MRAC can achieve asymptotic tracking, albeit with a non-minimum phase behavior. Otherwise, even with the
observer-based output feedback adaptive control design, if the reference model is SPR, instability will still result
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with the standard MRAC. On the other hand, the optimal control modification can produce bounded tracking for both
types of reference models.

5 Application of Flexible Wing Aircraft
Consider a flexible wing Generic Transport Model (GTM) equipped with distributed wing shaping control surfaces,
called Variable Camber Continuous trailing edge flaps (VCCTEF). The VCCTEF are multi-functional flight control
surfaces designed for wing shaping control for drag minimization, flutter suppression, and load alleviation. The
redundancy of the VCCTEF enables a multi-objective flight control capability which provides the traditional flight
control functions in roll, pitch, and yaw in concert with the wing shaping control objectives such as drag minimization
and gust load alleviation.

Figure 9: GTM with with Variable Camber Continuous Trailing Edge Flap

Consider a linearized model of a flexible aircraft with an uncertainty in the rigid aircraft states

ẋ = (A+∆A)x+Bu⇔
[

ẋr
ẋe

]
=

[
Arr +∆Arr Are

Aer Aee

][
xr
xe

]
+

[
Br
Be

]
u

y =Cx⇔ y =
[

I 0
][ xr

xe

]
= xr

(117)

where x(t) ∈Rn is a state vector that comprises a rigid aircraft state vector xr (t) ∈Rp and an elastic wing state vector
xe (t) ∈Rn−p, u(t) ∈Rm is a control vector, A ∈Rn×n and B ∈Rn×m are constant and known matrices, and ∆A ∈Rn×n

is an uncertainty. The open-loop plant is stable with A Hurwitz. The output vector y(t) is the rigid aircraft state vector
xr (t) is accessible for feedback. The rigid aircraft state vector xr (t) =

[
α (t) q(t) θ (t)

]> comprises the angle
of attack α (t), pitch rate q(t), and pitch attitude θ (t).

The control vector u(t) comprises the elevator deflection and 16 individual trailing edge flap segments, each
connected to an adjacent flap by an elastomer transition section as shown in blue in Fig. 10. For clarity, the trailing
edge flap segment is the outermost segment of the three cambered segments that form each spanwise flap section. This
segment is considered a fast-acting flight control surface [?] whereas the other two segments are slow-acting flight
control surfaces for drag reduction. Due to the stiffness imposed by the elastomer transition section, a constraint on the
relative deflection of any two adjacent flaps is imposed on the control input command. In order to address this relative
deflection constraint, a virtual control concept is used whereby the flap deflection is mapped into a mathematically
smooth shape function whose coefficients are the virtual control variables [?]. A cubic Chebyshev polynomial is
selected as a candidate shape function. Then, the flap deflection of the i-th flap is expressed as

δi = c0 + c1k+ c2
(
2k2−1

)
+ c3

(
4k3−3k

)
(118)
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where k = i−1
n−1 , i = 1,2, . . . ,16, n = 16 with δ1 being the inboard flap, and c j (t), j = 0,1,2,3 are the virtual control

variables. Thus, the control vector is represented by u(t) =
[

c0 (t) c1 (t) c2 (t) c3 (t)
]>.

Figure 10: Variable Camber Continuous Trailing Edge Flap (VCCTEF)

5.1 Output Feedback Design
A step command of the pitch attitude is specified as r (t) = θc (t). A nominal LQR controller is designed as

unom = Kxx+Krr (119)

where Kx =−R−1B>r W , Kr =−R−1B>r
(
A>rr−WBrR−1B>r

)−1 I>
θ

Q, Iθ =
[

0 0 1
]
, and W solves the Riccati equa-

tion+
WArr +A>rrW −WBrR−1B>r W + I>θ QIθ = 0 (120)

The reference model is then established as

ẏm = Arry+Brunom = Amym +Bmr (121)

where Am = Arr +BrKx and Bm = BrKr.
In the presence of the uncertainty ∆A, the ideal controller is designed as

u∗ = B>r I>r
(

IrBrB>r I>r
)−1

Ir [Amy+Bmr− (Arr +∆Arr)y−AreΦy−AreΦu] (122)

where Ir =

[
1 0 0
0 1 0

]
. The output feedback adaptive controller is then designed as

u =−(C1B1)
+
[
(Arr−Am)y−Bmr+Θ

>
Φ(y,u)

]
(123)

where (C1B1)
+ = B>r I>r

(
IrBrB>r I>r

)−1 Ir, Φ(y,u) =
[

y> (t) Φ>y (t) Φ>u (t)
]>

, and Θ(t) is computed by the opti-
mal control modification update law

Θ̇ =−ΓΦ(y,u)
[
e>y P−νΦ

> (y,u)ΘPA−1
m

]
(124)

For simulations, we choose the plant model for the GTM with 50% fuel loading at Mach 0.8 and an altitude of
36,000 ft with the first four elastic modes. The plant model contains 27 states: 3 rigid-body states corresponding to
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xr (t) and 24 elastic states for the four elastic modes. The state-space representation for each elastic mode includes a
generalized displacement, a generalized speed, two unsteady aerodynamic lag states for the generalized displacement,
and two unsteady aerodynamic lag states for the generalized speed. ∆Arr is modeled as a 20% reduction in CLα

, CLq ,
Cmα

, and Cmq . The nominal controller is designed with Q = 10 and R = I. This results in the following reference
model matrix:

Am =

 −0.4567 0.8971 −0.2197
−0.2603 −3.6750 −8.2325

0 1 0


which yields the eigenvalues −1.8491±2.2632i and −0.4335.

The modification parameter ν is chosen to be ν = 1 which stabilizes the asymptotic closed-loop matrix

Ac =

[
Am + 1

ν
Br (C1B1)

+ P−1AmP A12
Aer +

1
ν

Be (C1B1)
+ (Am−Arr +P−1AmP

)
A22

]
(125)

The adaptation rate matrix is chosen to be Γ = 104I. The matrix P is computed from the Lyapunov equation using
Q = I. The closed-loop response of the aircraft due to the output feedback adaptive controller with the optimal control
modification is shown in Fig. 11. The response is completely stable. After the first doublet, the pitch attitude tracking
is improved.
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Figure 11: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Optimal Control Modifica-
tion

On the other hand, the standard MRAC version of the output feedback adaptive controller can only be stabilized
for a very small value of the adaptation rate matrix. The closed-loop response of the aircraft due to the standard MRAC
output feedback adaptive controller with Γ= 10−3I is shown in Fig. 12. The pitch attitude response is seen to be better,
but the angle of attack response is slightly worse than that with the optimal control modification. Also, the standard
MRAC is highly sensitive to the adaptation rate matrix and cannot tolerate a larger value of 10−3I. In contrast, the
optimal control modification can tolerate a much larger value of the adaptation rate matrix. Because of the presence of
the damping term in the optimal control modification adaptive law, an implicit integration can be implemented. This
permits the adaptation rate matrix to be set as high as 1014I in the simulations.
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Figure 12: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Standard MRAC

5.2 Observer-Based Design
The observer state-space model of the plant is constructed as

˙̂x =
(
A+∆Â

)
x̂+L(y− ŷ)+Bu (126)

where ∆Â(t) is estimated by the following adaptive law:

∆
˙̂A> = ΓAx̂

(
e>P+ e>p W +η x̂>∆Â>PA−1

m

)
(127)

The nominal controller is designed as
unom = Kxx̂+Krr (128)

where Kx and Kr are computed from the LQR solution for the plant model.
The observer-based output feedback adaptive controller is then designed as

u = unom +∆Kxx̂ (129)

where ∆Kx is computed from the following adaptive law:

∆K̇>x = Γxx̂
(

e>P+ν x̂>∆K>B>PA−1
m

)
B (130)

Figure 13 shows the closed-loop response of the aircraft to the observer-based output feedback adaptive controller
with the optimal control modification using ν = 108 which stabilizes the closed-loop plant for Γx = 104I and without
∆Â(t) estimated. The P and W matrices are computed from the Lyapunov equations using Q = R = I. The nominal
LQR controller is designed with Q = 10 and R = I. The Kalman filter observer is designed using Q = R = G = I. The
tracking performance of the pitch attitude with the observer-based output feedback adaptive controller is worse than
that with the output feedback adaptive controller.
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Figure 13: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Optimal Control Modifica-
tion

In contrast, the standard MRAC version of the observer-based output feedback adaptive controller performs worse
than the optimal control modification. The adaptation rate matrix for the standard MRAC is highly sensitive and can
only be set to a small value. In the simulations, Γx = 10−4 is chosen for the standard MRAC. The pitch attitude
tracking is much worse with the standard MRAC than with the optimal control modification, as shown in Fig. 14. The
pitch rate response shows a high frequency signature.
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Figure 14: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Standard MRAC

Examining the norm of the P matrix, it is seen that ‖P‖ = 1.9322× 105. In comparison, for the output feedback
adaptive controller design, ‖P‖ = 2.8521. The large value of the P matrix thus effectively prevents the adaptation
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rate matrix for the standard MRAC from being set to a reasonable value. A simulation of the standard MRAC with
the normalized P matrix is implemented. The normalized P matrix is obtained by dividing the computed P matrix
from the Lyapunov equation using Q = I by its norm. This allows the adaptation rate matrix to increase to Γx = 10.
The closed-loop response to the standard MRAC is improved with the normalized P matrix, as shown in Fig. 15.
Comparing to the optimal control modification, the closed-loop response to the standard MRAC with the normalized
P matrix appears slightly worse since high frequency contents in the pitch rate can still be seen.
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Figure 15: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Standard MRAC Using
Normalized P Matrix
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Figure 16: Closed-Loop Response of Aircraft to Output Feedback Adaptive Control with Standard MRAC and ∆Â(t)
Estimation Using Normalized P and W Matrices
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Figure 16 is the closed-loop response to the standard MRAC with the normalized P matrix and ∆Â(t) estimated
in the observer design using ΓA = 10 with the normalized W matrix. The pitch attitude tracking is much improved
over that without the ∆Â(t) estimation. The angle of attack response, however, is worsened. Comparing to the output
feedback adaptive controller with the optimal control modification, the closed-loop response appears to be slightly
worse.

6 Conclusions
An output feedback adaptive control method based on the optimal control modification is presented. The method is
shown to be able to stabilize SISO systems with relative degree 1 by taking advantage of the linear asymptotic property.
This method is extended to non-SPR MIMO systems. A stability condition is established to ensure that the standard
MRAC can achieve a stable output feedback adaptation. When this stability condition is not met, the optimal control
modification can still achieve a stable adaptation, but the standard MRAC results in instability. The potential degraded
tracking performance of the output feedback adaptive control for non-minimum phase systems can be addressed by
observer-based output feedback adaptive control using the Luenberger observer design. The optimal control modifica-
tion demonstrates the ability to achieve a stable adaptation for observer-based output feedback adaptive control in the
presence of the mismatch between the non-SPR plant and the SPR reference model which otherwise causes instability
for the standard MRAC. Simulations for a flexible wing aircraft demonstrate the effectiveness of the optimal control
modification for output feedback adaptive control.
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